Solids

Adapted from a presentation by Dr. Schroeder, Wayne State University

Crystal Systems

Types of Crystalline Solids

Туре	Attractive forces	examples
Molecular	IMF's	Ice, dry ice, sugar
Ionic	Ionic bonds	NaCl, CaF ₂ , ZnS
Metallic	Metallic bonds	Na, Fe, Zn, Au
Covalent network	Covalent bonds	Diamond, graphite, gemstones

Example of a molecular solid: ice

Note: the regular arrangement of the crystal maximizes the H-bonding (4/molecule) and as a side effect actually causes the molecules to move *further apart* than in the liquid state, thus rendering ice less dense than liquid water – ice floats. (Weird!)

Sodium chloride crystal

Example of a metallic solid: magnesium

sea of electrons model

bonding in metals:the "sea of electrons" model

• A regular array of cations in a "sea" of delocalized mobile valence electrons.

Why are metal solids malleable while ionic solids are brittle?

Undisturbed ionic crystal

Applied force realigns particles.

 $\begin{array}{c} + & - \\ - & + \\ + & - \\ + & - \\ + & - \end{array} \begin{array}{c} + & - \\ + & - \\ + & - \end{array}$

Forces of repulsion break crystal apart.

Bonding in metals: Band or Molecular Orbital (MO) Model

Molecular Orbital Energy Levels Produced When Various Numbers of Atomic Orbitals Interact

Number of interacting atomic orbitals 6.02×10^{23} 2 4 16 E

Partial Representation of the MO Energies in

b) a typical metal

Energy

Two Types of Alloys

 Brass is a <u>substitutional</u> alloy.

 Steel is an <u>interstitial</u> alloy.

Example of a covalent solid: quartz

The structures of diamond and graphite

 Weak

 bonding

 between

 layers

Graphite

Diamond

The unhybridized *p* orbitals and π-system in graphite

SiO₂: quartz vs. glass

quartz (crystalline)

glass (amorphous)

Ceramics

n-type semiconductor: silicon crystal doped with arsenic

p-type semiconductor: silicon crystal doped with boron

A missing electron \rightarrow a positive "hole" that moves in the opposite direction to the electrons that move to fill it

Solids

Adapted from a presentation by Dr. Schroeder, Wayne State University

credits

- Lifeinplanelight.wordpress.com
- Kinime.net
- Cengagelearning.com
- Periodni.com
- Chemistry.about.com
- Physicaplus.org.il
- Ltcc-consulting.com
- Dr. Schroeder, Wayne State University presentation